Spike-Timing-Dependent Plasticity and Short-Term Plasticity Jointly Control the Excitation of Hebbian Plasticity without Weight Constraints in Neural Networks
نویسندگان
چکیده
Hebbian plasticity precisely describes how synapses increase their synaptic strengths according to the correlated activities between two neurons; however, it fails to explain how these activities dilute the strength of the same synapses. Recent literature has proposed spike-timing-dependent plasticity and short-term plasticity on multiple dynamic stochastic synapses that can control synaptic excitation and remove many user-defined constraints. Under this hypothesis, a network model was implemented giving more computational power to receptors, and the behavior at a synapse was defined by the collective dynamic activities of stochastic receptors. An experiment was conducted to analyze can spike-timing-dependent plasticity interplay with short-term plasticity to balance the excitation of the Hebbian neurons without weight constraints? If so what underline mechanisms help neurons to maintain such excitation in computational environment? According to our results both plasticity mechanisms work together to balance the excitation of the neural network as our neurons stabilized its weights for Poisson inputs with mean firing rates from 10 Hz to 40 Hz. The behavior generated by the two neurons was similar to the behavior discussed under synaptic redistribution, so that synaptic weights were stabilized while there was a continuous increase of presynaptic probability of release and higher turnover rate of postsynaptic receptors.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملAugmentation of paired pulse index as short-term plasticity due to morphine dependence
Abstract* Introduction: Chronic morphine exposure can cause addiction and affect synaptic plasticity, but the underlying neural mechanisms of this phenomenon remain unknown. Herein we used electrophysiologic approaches in hippocampal CA1 area to examine the effect of chronic morphine administration on short-term plasticity. Methods: Experiments were carried out on hippocampal slices taken f...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012